Domain formation induced by the adsorption of charged proteins on mixed lipid membranes.
نویسندگان
چکیده
Peripheral proteins can trigger the formation of domains in mixed fluid-like lipid membranes. We analyze the mechanism underlying this process for proteins that bind electrostatically onto a flat two-component membrane, composed of charged and neutral lipid species. Of particular interest are membranes in which the hydrocarbon lipid tails tend to segregate owing to nonideal chain mixing, but the (protein-free) lipid membrane is nevertheless stable due to the electrostatic repulsion between the charged lipid headgroups. The adsorption of charged, say basic, proteins onto a membrane containing anionic lipids induces local lipid demixing, whereby charged lipids migrate toward (or away from) the adsorption site, so as to minimize the electrostatic binding free energy. Apart from reducing lipid headgroup repulsion, this process creates a gradient in lipid composition around the adsorption zone, and hence a line energy whose magnitude depends on the protein's size and charge and the extent of lipid chain nonideality. Above a certain critical lipid nonideality, the line energy is large enough to induce domain formation, i.e., protein aggregation and, concomitantly, macroscopic lipid phase separation. We quantitatively analyze the thermodynamic stability of the dressed membrane based on nonlinear Poisson-Boltzmann theory, accounting for both the microscopic characteristics of the proteins and lipid composition modulations at and around the adsorption zone. Spinodal surfaces and critical points of the dressed membranes are calculated for several different model proteins of spherical and disk-like shapes. Among the models studied we find the most substantial protein-induced membrane destabilization for disk-like proteins whose charges are concentrated in the membrane-facing surface. If additional charges reside on the side faces of the proteins, direct protein-protein repulsion diminishes considerably the propensity for domain formation. Generally, a highly charged flat face of a macroion appears most efficient in inducing large compositional gradients, hence a large and unfavorable line energy and consequently lateral macroion aggregation and, concomitantly, macroscopic lipid phase separation.
منابع مشابه
Adsorption of charged macromolecules on mixed fluid membranes
The adsorption of charge rigid macromolecules, such as proteins from solution, on mixed (charged and neutral) lipid membranes is affected by several important factors. First, the mobile lipids in the membrane may rearrange, and demix locally to match the charge density of the apposed macromolecule, thus lowering the adsorption free energy. On the other hand, the (electrostatic) interaction betw...
متن کاملLipid demixing and protein-protein interactions in the adsorption of charged proteins on mixed membranes.
The adsorption free energy of charged proteins on mixed membranes, containing varying amounts of (oppositely) charged lipids, is calculated based on a mean-field free energy expression that accounts explicitly for the ability of the lipids to demix locally, and for lateral interactions between the adsorbed proteins. Minimization of this free energy functional yields the familiar nonlinear Poiss...
متن کاملINTERACTION OF GLOBULAR PROTEINS WITH MIXED LIPID VESICLES A thermodynamic study of the lipid lateral phase separation
Vesicles of charged (Phosphatidic Acid) and neutral (Phosphatidylcholine) lipids were used as membranes model to examine the lateral phase separation induced by a globular protein, namely lysozyme. The ability of the positively charged protein, adsorbed onto vesicles surfaces, to induce the formation of micro-domains richer in the charged lipid component has been investigated by calorimetric me...
متن کاملIncreased concentration of polyvalent phospholipids in the adsorption domain of a charged protein.
We studied the adsorption of a charged protein onto an oppositely charged membrane, composed of mobile phospholipids of differing valence, using a statistical-thermodynamical approach. A two-block model was employed, one block corresponding to the protein-affected region on the membrane, referred to as the adsorption domain, and the other to the unaffected remainder of the membrane. We calculat...
متن کاملFlexible charged macromolecules on mixed fluid lipid membranes: theory and Monte Carlo simulations.
Fluid membranes containing charged lipids enhance binding of oppositely charged proteins by mobilizing these lipids into the interaction zone, overcoming the concomitant entropic losses due to lipid segregation and lower conformational freedom upon macromolecule adsorption. We study this energetic-entropic interplay using Monte Carlo simulations and theory. Our model system consists of a flexib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 88 3 شماره
صفحات -
تاریخ انتشار 2005